Abstract

A push-in interbody orthopedic implant having an expandable height for at least in part insertion at least in part between two adjacent bone masses.

Inventors: Michelson; Gary Karlin (Venice, CA)
Family ID: 26876280
Appl. No.:
Filed: 2006-10-10
Current U.S. Class: 623/17.16
Current CPC Class: A61F 2/4455 (20130101); A61F 2/446 (20130101); A61F 2/4465 (20130101); A61F 2/44 (20130101); A61B 17/8052 (20130101); A61F 2310/00359 (20130101); A61F 2/28 (20130101); A61F 2/30744 (20130101); A61F 2/442 (20130101); A61F 2/4611 (20130101); A61F 2002/2817 (20130101); A61F 2002/2835 (20130101); A61F 2002/30143 (20130101); A61F 2002/30187 (20130101); A61F 2002/30261 (20130101); A61F 2002/30331 (20130101); A61F 2002/30362 (20130101); A61F 2002/30392 (20130101); A61F 2002/30405 (20130101); A61F 2002/305 (20130101); A61F 2002/30517 (20130101); A61F 2002/30538 (20130101); A61F 2002/30556 (20130101); A61F 2002/30616 (20130101); A61F 2002/30626 (20130101); A61F 2002/30632 (20130101); A61F 2002/30774 (20130101); A61F 2002/30777 (20130101); A61F 2002/30779 (20130101); A61F 2002/30785 (20130101); A61F 2002/30787 (20130101); A61F 2002/30789 (20130101); A61F 2002/30794 (20130101); A61F 2002/30836 (20130101); A61F 2002/30841 (20130101); A61F 2002/30891 (20130101); A61F 2002/30904 (20130101); A61F 2002/30975 (20130101); A61F 2002/4475 (20130101); A61F 2002/448 (20130101); A61F 2220/0025 (20130101); A61F 2220/0033 (20130101); A61F 2230/0017 (20130101); A61F 2230/0034 (20130101); A61F 2230/0082 (20130101); A61F 2250/0006 (20130101); A61F 2250/0009 (20130101); A61F 2310/00017 (20130101); A61F 2310/00023 (20130101); A61F 2310/00071 (20130101); A61F 2310/00179 (20130101); A61F 2310/00293 (20130101); A61F 2310/00407 (20130101); A61F 2310/00796 (20130101); A61B 17/86 (20130101)
Current International Class: A61F 2/44 (20060101)
Field of Search: ;623/17.11-17.16,23.47,23.48

Claims

What is claimed is:

1. A push-in orthopedic implant having a length for at least in part linear insertion at least in part between two adjacent bone masses, said implant comprising: an uppermember having a portion being at least in part arcuate adapted for placement toward and into contact with one of the adjacent bone masses, said upper member having at least one opening adapted to communicate with one of the adjacent bone masses, saidupper member having a proximal end and a distal end; a lower member having a portion being at least in part arcuate adapted for placement toward and into contact with the other of the adjacent bone masses, said lower member having at least one openingadapted to communicate with the other of the adjacent bone masses, said openings of said upper and lower members being in communication with one another and adapted for permitting for the growth of bone from adjacent bone mass to adjacent bone massthrough said implant, said lower member having a proximal end and a distal end corresponding to said proximal end and said distal end of said upper member, respectively, said upper and lower members adapted to rotatably articulate about a pivot axisadjacent one of said proximal ends and said distal ends of said upper and lower members, the articulation of said upper and lower members allowing for expansion of a height of said implant, the pivot axis being transverse to a mid-longitudinal axis ofsaid implant, said upper and lower members having a first position relative to one another allowing for a collapsed implant height and a second position relative to one another allowing for an increased height; at least one blocker adapted tocooperatively engage and hold at least a portion of said upper and lower members apart so as to maintain the increased height of said implant and resist collapse of said implant to the collapsed implant height when said implant is in a final deployedposition, said at least one blocker being configured to rotate about an axis of rotation generally parallel to the mid-longitudinal axis of said implant in a plane generally perpendicular to the mid-longitudinal axis of said implant and to remain in saidplane while transitioning said upper and lower members from said first position to said second position, said at least one blocker having an upper surface, a lower surface, and side surfaces as defined when said at least one blocker is positioned toincrease the height of said implant, said side surfaces intersecting said upper and said lower surfaces at two pairs of diametrically opposed junctions, said two pairs of diametrically opposed junctions being a pair of diametrically opposed corners and apair of diametrically opposed arcs; and a hollow defined between said upper and lower member, the pivot axis of said upper and lower members extending through said hollow.

2. The push-in implant of claim 1, wherein the hollow defined between said upper and lower members is in communication with said openings in each of said upper and lower members, said hollow being adapted to receive fusion-promoting substances.

3. The push-in implant of claim 2, wherein said hollow has a width that is unobstructed by any mechanism for moving said at least one blocker.

4. The push-in implant of claim 1, wherein said implant has a constant width in both the first position and the second position.

5. The push-in implant of claim 1, wherein said implant has side walls and said at least one blocker does not contact said side walls when said implant is in the final deployed position.

6. The push-in implant of claim 1, wherein each of said upper and lower members have a track configured to permit said at least one blocker to seat therein.

7. The push-in implant of claim 1, wherein said at least one blocker moves said upper and lower members from a parallel orientation relative to one another in the first position to one of a parallel and an angled orientation relative to oneanother in the second position.

8. The push-in implant of claim 1, wherein said two diametrically opposed arcs are each of the same radius.

9. The push-in implant of claim 8, wherein the distance across said two diametrically opposed arcs generally approximates the distance between said upper and lower surfaces of said at least one blocker.

10. The push-in implant of claim 1, wherein said upper and lower members are configured to cooperate with one another so as to stop said upper and lower members from being moved apart from one another more than a predetermined distance.

11. The push-in implant of claim 1, further comprising at least a portion of a bone-engaging projection adapted for linear insertion formed on exteriors of said upper and lower members for penetrably engaging the adjacent bone masses.

12. The push-in implant of claim 11, wherein said bone-engaging projection is selected from one of a ratchet, a surface roughening, and a knurling.

13. The push-in implant of claim 1, in combination with a bone growth promoting material.

14. The push-in implant of claim 13, wherein said bone growth promoting material is selected from one of bone morphogenetic protein, hydroxyapatite, and genes coding for the production of bone.

15. The push-in implant of claim 1, wherein said distal ends of said upper and lower members are symmetrical from side to side.

16. The push-in implant of claim 1, wherein said at least one blocker has a first height dimension corresponding to the height of said at least one blocker when said implant is initially inserted between the adjacent bone masses, and said atleast one blocker has a second height dimension corresponding to the height of said at least one blocker when said at least one blocker is rotated into a final deployed position of said at least one blocker to increase the height of said implant, saidsecond height dimension of said at least one blocker being greater than said first height dimension of said at least one blocker, said first height and said second height being in a plane.

17. A push-in orthopedic implant having a length for at least in part linear insertion at least in part between two adjacent bone masses, said implant comprising: an upper member having a portion being at least in part arcuate adapted forplacement toward and into contact with one of the adjacent bone masses, said upper member having at least one opening adapted to communicate with one of the adjacent bone masses, said upper member having a proximal end and a distal end; a lower memberhaving a portion being at least in part arcuate adapted for placement toward and into contact with the other of the adjacent bone masses, said lower member having at least one opening adapted to communicate with the other of the adjacent bone masses,said openings of said upper and lower members being in communication with one another and adapted for permitting for the growth of bone from adjacent bone mass to adjacent bone mass through said implant, said lower member having a proximal end and adistal end corresponding to said proximal end and said distal end of said upper member, respectively, said upper and lower members adapted to rotatably articulate about a pivot axis adjacent one of said proximal ends and said distal ends of said upperand lower members, the articulation of said upper and lower members allowing for expansion of a height of said implant, the pivot axis being transverse to a mid-longitudinal axis of said implant, said upper and lower members having a first positionrelative to one another allowing for a collapsed implant height and a second position relative to one another allowing for an increased height; at least one blacker adapted to cooperatively engage and hold at least a portion of said upper and lowermembers apart so as to maintain the increased height of said implant and resist collapse of said implant to the collapsed implant height when said implant is in a final deployed position, said at least one blocker being configured to rotate about an axisof rotation generally parallel to the mid-longitudinal axis of said implant in a plane generally perpendicular to the mid-longitudinal axis of said implant and to remain in said plane while transitioning said upper and lower members from said firstposition to said second position, said at least one blocker having an upper surface, a lower surface, and side surfaces as defined when said at least one blocker is positioned to increase the height of said implant, said side surfaces intersecting saidupper and said lower surfaces at two pairs of diametrically opposed junctions, said at least one blocker having a first height dimension corresponding to the maximum height of said at least one blocker when said implant is initially inserted between theadjacent bone masses, and said at least one blocker having a second height dimension corresponding to the maximum height of said at least one blacker when said at least one blacker is rotated into a final deployed position of said at least one blocker toincrease the height of said implant, said second height dimension of said at least one blocker being greater than said first height dimension of said at least one blacker, said first height and said second height being in a plane; and a hollow definedbetween said upper and lower member, the pivot axis of said upper and lower members extending through said hollow.

18. A push-in orthopedic implant having a length for at least in part linear insertion at least in part between two adjacent bone masses, said implant comprising: an upper member having a portion being at least in part arcuate adapted forplacement toward and into contact with one of the adjacent bone masses, said upper member having at least one opening adapted to communicate with one of the adjacent bone masses, said upper member having a proximal end and a distal end; a lower memberhaving a portion being at least in part arcuate adapted for placement toward and into contact with the other of the adjacent bone masses, said lower member having at least one opening adapted to communicate with the other of the adjacent bone masses,said openings of said upper and lower members being in communication with one another and adapted for permitting for the growth of bone from adjacent bone mass to adjacent bone mass through said implant, said lower member having a proximal end and adistal end corresponding to said proximal end and said distal end of said upper member, respectively, said upper and lower members adapted to rotatably articulate about a pivot axis adjacent one of said proximal ends and said distal ends of said upperand lower members, the articulation of said upper and lower members allowing for expansion of a height of said implant, the pivot axis being transverse to a mid-longitudinal axis of said implant, said upper and lower members having a first positionrelative to one another allowing for a collapsed implant height and a second position relative to one another allowing for an increased height; at least one blocker adapted to cooperatively engage and hold at least a portion of said upper and lowermembers apart so as to maintain the increased height of said implant and resist collapse of said implant to the collapsed implant height when said implant is in a final deployed position, said at least one blocker being configured to rotate about an axisof rotation generally parallel to the mid-longitudinal axis of said implant in a plane generally perpendicular to the mid-longitudinal axis of said implant and to remain in said plane while transitioning said upper and lower members from said firstposition to said second position, said at least one blocker having an upper surface, a lower surface, and side surfaces as defined when said at least one blocker is positioned to increase the said at least one blocker having a height dimension measuredbetween said upper and lower surfaces greater than a thickness dimension measured parallel to the axis of rotation, said side surfaces intersecting said upper and said lower surfaces at two pairs of diametrically opposed junctions; and a hollow definedbetween said upper and lower member, the pivot axis of said upper and lower members extending through said hollow, wherein said implant has side walls and said at least one blocker does not contact said side walls when said implant is in the finaldeployed position.


Description BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to an improved push-in orthopedic fusion implant for insertion at least in part between adjacent bone masses. The present invention is directed to push-in implants only and not to threaded implants. Inparticular, the invention relates to a push-in orthopedic implant that is selectively directionally expandable and which specifically has height raising capabilities that are utilized once the implant is initially positioned. More particularly, theinvention relates to a push-in implant having arcuate portions of upper and lower members that have a first, collapsed, or insertion position.

2. Description of the Related Art

Push-in spinal fusion implants having upper and lower arcuate portions adapted for placement in contact with adjacent vertebral bodies are known in the related art. Such a push-in spinal fusion implant was invented by Michelson and is disclosedin U.S. Pat. No. 5,593,409, filed Feb. 17, 1995, which is hereby incorporated by reference.

Lordotic, frusto-conical, or tapered, push-in spinal fusion implants are also known in the art. By way of example, Michelson has invented such implants as disclosed in U.S. application Ser. No. 08/484,928, filed Jun. 7, 1995, which is herebyincorporated by reference.

Expandable fusion implants are known in the related art. The first expandable spinal fusion (allowing for the growth of bone from vertebral body to vertebral body through the implant) implant was invented by Michelson and is disclosed in U.S. Pat. No. 5,776,199, filed Jun. 28, 1988, which is hereby incorporated by reference.

Lordotic, frusto-conical, or tapered, spinal fusion implants have the advantage of restoring or enhancing spinal lordosis. Push-in spinal fusion implants offer the advantage of being easily positioned in the implantation space and of havingexcellent fastening or holding features. Expandable fusion implants offer the advantage of allowing for the placement of a potentially larger implant through a smaller opening in a patient’s body. Selective expansion along a single direction, (e.g.vertically only when correctly installed) offers the advantage of increasing the height of the implant and therefore the distraction of the disc space, but without a concomitant increase in the width of the implant.

SUMMARY OF THE INVENTION

In accordance with the present invention, as embodied and broadly described herein, there is provided an expandable push-in orthopedic implant for insertion at least in part between two adjacent bone masses. The push-in implant of the presentinvention includes an upper member having an arcuate portion adapted for placement toward and into contact with one of the adjacent bone masses and a lower member having an arcuate portion adapted for placement toward and into contact with the other ofthe adjacent bone masses. The arcuate portions of the upper and lower members have at least one opening in communication with one another for permitting for the growth of bone from adjacent bone mass to adjacent bone mass through the implant. The upperand lower members are articulated therebetween, preferably proximate one of the proximal ends and the distal ends of the upper and lower members and preferably allow for divergence between the articulating members at the end opposite the articulating endof the implant. The upper and lower members have a first position relative to one another that allows for a collapsed implant height and a second position relative to one another that allows for an increased height. The upper and lower members have aleading or distal end, an opposite trailing or proximal end, and a length therebetween. A blocker that is preferably in the form of an expander is located proximate at least one of the ends for holding at least a portion of the upper and lower membersapart so as to maintain the increased height of the implant and resist the collapse of the implant to the collapsed implant height. Expansion of the implant preferably increases the implant height only, that is in a plane passing through themid-longitudinal axis of the implant and the upper and lower members.

The blocker need not be in contact with the upper and lower members when the implant is initially inserted into the implantation space. The blocker may be a block or any type of spacer that is inserted between or otherwise holds apart thearticulated upper and lower members after the implant is positioned so as to hold portions of the upper and lower members spaced apart the optimal height and angulation relative to one another. That is, the implant may be expanded with an extrinsic tooland then the expanded portions held apart in the second position by a third body blocker or blockers placed therebetween. Further, a physician may be able to select from a series of blockers having different heights usable with the same implant. Thepresent invention includes expanding the implant with a tool, such as a spreader or a distractor, but is not limited to a scissors type, a rack and gear type, a threaded member type or any other type of particular external expander tool mechanism. Eachtool nevertheless preferably engages the upper and the lower implant members to urge the implant apart. Then the blocker may be inserted into contact with the upper and lower members to maintain the implant at an expanded height. The height of the gapcreated by expanding the implant may be measured so that the appropriately sized blocker or expander may be inserted into contact with the upper and lower members depending upon the amount of distraction of the implant desired by the physician.

In a preferred embodiment, the blocker is in contact with the upper and lower members prior to the implant expansion, and the blocker is itself the expander, which may be operated by an extrinsic tool. By way of example only, the expander mayrotate: to increase the height of the implant; in a single direction; more than 40 degrees and less than 140 degrees and more preferably approximately 90 degrees to move from a first insertion position to a second/deployed position; and in a planeperpendicular to the longitudinal axis of the implant to increase the height of the implant. The expander preferably remains in the same perpendicular plane relative to the longitudinal axis of the implant when rotated. In another embodiment theexpander may be a member, such as a plate, a rod, or of any other configuration suitable for the intended purpose initially within the interior between the upper and lower members in a collapsed position that is erected to a more erect position when theimplant is in the expanded position. The expander can be hollow or solid.

In a preferred embodiment, the expander preferably has means including, but not limited to, an opening, a projection, or a detent adapted to cooperatively engage a tool used to rotate the expander to increase the height of the implant. Theopening, projection, or detent is adapted to cooperatively engage a tool that preferably rotates about an axis parallel to the longitudinal axis the implant to rotate the expander to increase the height of the implant. Rather then having an opening, aprojection, a detent, or a central aperture, the expander may have two or more recesses or holes placed on or through the proximal face to engage a tool. In an alternative embodiment of the expander, cutouts may be positioned along a portion of theperimeter of the expander.

The expander is preferably located proximate at least one of the proximal end or the distal end of the upper and lower members. The expander, however, need not be so located. The expander may be spaced away from the end and even permit ahollow portion to exist on both the proximate and distal sides of the expander. The upper and lower members preferably have an interior surface therebetween and a hollow defined therein with the expander located proximate one of the longitudinal ends ofthat interior hollow. The hollow between the ends of the upper and lower members is preferably unobstructed by the expander so as to permit growth of bone directly through the hollow unobstructed by the expander. The implant may comprise a second andlesser hollow extending at least in part from the expander to the end of the upper and lower members proximate that expander. A preferred expander mechanism includes an expander in combination with cooperating surfaces of the end wall of the implantthat guide and support the expander.

A preferred expander has a first height in a first or insertion position and a greater second height when rotated or positioned into a second or deployed position to increase the maximum height of the implant from a first maximum height to asecond maximum height. By way of example, at least one of the tracks of the upper and lower members preferably has a cooperating surface and the expander has a corresponding cooperating surface that contacts the cooperating surface of the track toorient the expander in a predetermined position. The cooperating surfaces preferably orient the expander within the implant such that the axis of rotation of the expander is parallel with the longitudinal axis of the implant and, more preferably, centerthe expander within the implant such that the axis of rotation of the expander coincides with the longitudinal axis of the implant. As may be advantageous for the further loading of the implant with fusion-promoting material, the expander may cooperatewith the tracking surfaces of the upper and lower members to allow the expander to slide from side-to-side for easier access to the implant interior.

The implant is preferably packed full of bone or other fusion-promoting substances prior to expansion of the implant. Expansion of the implant results in a space being formed in the implant interior into which additional fusion promotingsubstances such as bone may preferably be packed. Rotating the expander within the implant causes a void that can be filled with bone. If the expander is configured to permit side-to-side movement, then packing of additional bone into the implant iseasy.

In a preferred embodiment of the present invention, the expander height change from the first position to the second position corresponds to substantially the same change in height of the implant along at least a portion of the length of theimplant. The expander may be configured in different ways. A preferred configuration for a rotational expander includes: a first dimension corresponding to the width of the expander when the implant is initially inserted into the spine and to theheight of the rotational expander when the rotational expander is rotated to increase the height of the implant; and a second dimension corresponding to the height of the expander when the implant is initially inserted into the spine and to the width ofthe expander when the expander is rotated to increase the height of the implant. The first dimension preferably is greater than the second dimension.

The expander may have an upper surface, a lower surface, and side surfaces as defined when the expander is positioned after rotation to increase the height of the implant. As used herein, the term “side surfaces” refers to those portions of theexpander that extend from the upper member to the lower member after the expander has been rotated into its second or deployed position to increase the height of the implant. The “upper” and “lower” expander surfaces refer to those portions of theexpander that are in contact with the upper and lower members when the implant is in its second or expanded configuration. Each of the upper and lower surfaces of the expander may lie generally in a plane and may be generally parallel to one another. The side surfaces and the upper and lower surfaces may be oriented so as to substantially form a parallelogram, which will typically be in the shape of a rectangle generally.

A preferred expander is in the form of a modified rectangle or rhomboid. The expander generally has a longer dimension and a shorter dimension. When the expander is in a first position, the short dimension spans the distance between the upperand lower members and when the expander is in the second position, the expander’s long dimension spans the distance between the upper and lower members.

The expander may have a cross-section with the side surfaces intersecting the upper and the lower surfaces at junctions, which may be two diametrically opposed corners and two diametrically opposed arcs. The two diametrically opposed arcs maybe each of the same radius and, preferably, the diagonal or modified hypotenuse “MH” between the opposed arcs has a maximum dimension that generally approximates the distance between the upper and lower surfaces such that, when the expander is rotatedfrom a first insertion position toward a second/deployed position, no substantial over-distraction occurs between the adjacent bone masses as would occur if the height of the implant was increased markedly beyond that obtained in the second/deployedposition. The two diametrically opposed corners may form a 90-degree angle. The expander preferably has a fixed shape during movement from a first insertion position to a second/deployed position within the implant.

The upper and lower members in certain embodiments are articulated to one another so one of the respective ends of the upper and lower members remain articulated while the other of the respective ends of the upper and lower members are free tomove away from one another. In a preferred embodiment, the articulating means is achieved without a third member, such as an axle shaft, for example, passing through the implant. The articulating means preferably is formed into the implant wallsthemselves, and in a further preference in such a way that the two-implant halves may be articulated when at 90 degrees to each other. The halves then are moved, much like a book closing, toward each other prior to insertion into the implantation space. Once the upper and lower members are closed from the approximately 90 degrees articulating position, much like closing the leaves of a book, the upper and lower members of the implant are locked together at the articulation so that the members will notdisarticulate when in use. Other types of articulation as would be known to one of ordinary skill in the art are within the scope of the present invention.

The accompanying drawings, which are incorporated in and constitute a part of this specification, are by way of example only and not limitation, and illustrate several embodiments of the invention, which together with the description, serve toexplain the principles of the invention. The scope of the invention is limited only by the scope of the claims as from the present teachings other embodiments of the present invention shall be apparent to those skilled in the art.

BRIEFDESCRIPTION OF THE DRAWINGS

FIG. 1 is an exploded perspective view of a spinal fusion implant of one embodiment of the present invention;

FIG. 1A is a perspective view of an alternative embodiment of a blocker in the form of an expander for use with the spinal fusion implant of FIG. 1;

FIG. 1B is a perspective view of another alternative embodiment of a blocker for use with the spinal fusion implant of FIG. 1;

FIG. 1C is a perspective view of yet another alternative embodiment of a blocker for use with the spinal fusion implant of FIG. 1;

FIG. 2 is a top plan view of the implant of FIG. 1;

FIG. 2A is a top plan view of an alternative embodiment of the present invention;

FIG. 3 is a trailing end view of the implant of FIG. 1;

FIG. 3A is a trailing end view of the implant of FIG. 2A;

FIG. 3B is a trailing end view of yet another alternative embodiment of the present invention;

FIG. 4 is a side elevation view of the implant of FIG. 1;

FIG. 4A is a side elevation view of the implant of FIG. 2A;

FIG. 5 is a leading end view of the implant with the end cap there attached of FIG. 1;

FIG. 5A is a leading end view of the implant of FIG. 2A with an end cap attached;

FIG. 6 is a cross-sectional view along line 6-6 of FIG. 2;

FIG. 7 is a cross-sectional view along line 7-7 of FIG. 5;

FIG. 8 is a side elevation view of an end cap for use with the implant of FIG. 1;

FIG. 9 is a schematic representation of a geometric configuration of a cross-section of an expander in accordance with one embodiment of the present invention;

FIG. 10 is a trailing end perspective view of the implant of FIG. 1;

FIG. 11 is a side view of the implant of FIG. 10 being inserted from a generally anterior approach to the spine into an implantation site formed across a disc space and two adjacent vertebral bodies of the spine shown in partial cross-section;

FIG. 12A is a cross-sectional view of the implant of FIG. 1 inserted in an implantation site formed across the disc space and two adjacent vertebral bodies of the spine;

FIG. 12B is a cross-sectional view of the implant of FIG. 1 inserted in an implantation site of FIG. 12A and expanded to place the adjacent vertebral bodies in proper lordosis;

FIG. 12C is a trailing end perspective view of the implant of FIG. 1 with the implant in an expanded position;

FIG. 13 is a trailing end view of the anterior aspect of two adjacent vertebral bodies and two implants of FIG. 1 implanted therebetween in a final position;

FIG. 13A is a trailing end view of the anterior aspect of two adjacent vertebral bodies and two alternative embodiment implants implanted therebetween in a final position;

FIG. 14 is a cross-sectional side view of an implantation site formed posteriorly across the disc space between two adjacent vertebral bodies and a second embodiment of an implant of the present invention for posterior insertion being installedinto the implantation site;

FIG. 15 is a cross-sectional side view of the implantation site formed across the space between two adjacent vertebral bodies and the implant of FIG. 14 installed into the implantation space;

FIG. 16 is a leading end view of the implant of FIG. 14;

FIG. 17 is a top plan view of another embodiment of the present invention inserted upon the lower vertebral body of an implantation site formed anteriorly across a disc space with the vertebral body shown in partial cross-section;

FIG. 17A is a top plan view of yet another embodiment of the present invention inserted upon the lower vertebral body of an implantation site formed anteriorly across a disc space with the vertebral body shown in partial cross-section;

FIG. 18A is a cross-sectional side view of the implantation site formed across the space between two adjacent vertebral bodies and one of the implants of FIG. 17 installed into the implantation space;

FIG. 18B is a trailing end view of the anterior aspect of two adjacent vertebral bodies and the implant of FIG. 17 implanted therebetween in an expanded position as well as another embodiment designed to be used as a side-by-side pair;

FIG. 19 is a cross-sectional side view of the implant of FIG. 18A without bone or other fusion-promoting substances shown therein for the purpose of illustrating a preferred configuration for articulating the upper and lower members togetherwith a hook and peg configuration that prevents the implant from over expanding and with an alternative second hook and peg shown on the right hand side of the figure in dashed lines;

FIG. 20 is a partial cross sectional view of an embodiment of an interlocking wall design along line 21-21 of FIG. 19;

FIG. 21 is a partial cross sectional view of another embodiment of an interlocking wall design along line 21-21 of FIG. 19;

FIG. 22A is a cross-sectional side view of an alternative embodiment of an implant of the present invention with a pivoting trailing end that is also a blocker in the trailing end in the open position;

FIG. 22B is a cross-sectional side view of an alternative embodiment of an implant of the present invention with a pivoting trailing end that is also a blocker with the trailing end in the closed position; and

FIG. 23 is a trailing end perspective view of the implant of FIG. 22B.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description is intended to be representative only and not limiting and many variations can be anticipated according to these teachings, which are included within the scope of this inventive teaching. Reference will now be made indetail to the preferred embodiments of this invention, examples of which are illustrated in the accompanying drawings.

Shown in FIGS. 1, 2, 3, 4, 5, 6, 7, and 10-13, in accordance with the present invention, as embodied and broadly described herein, is one embodiment of an expandable push-in artificial interbody spinal fusion implant 100 for anterior insertionacross a disc space D between two adjacent vertebral bodies V of a human spine. Push-in implant 100 of the present invention includes an upper member 102 having an arcuate portion 104 adapted for placement toward and at least in part within the upper ofthe adjacent vertebral bodies V and a lower member 106 having an arcuate portion 108 adapted for placement toward and at least in part within the lower of the adjacent vertebral bodies V. Arcuate portions 104, 108 of upper and lower members 102, 106 haveat least one opening 110, 112 in communication with one another for permitting for the growth of bone from vertebral body V to adjacent vertebral body V through implant 100. Upper and lower members 102, 106 are articulated therebetween at an adjacentone of the proximal ends and the distal ends of upper and lower members 102, 106 and allow for rotation between the articulating members at the end opposite the articulating end of implant 100. Upper and lower members 102, 106 have a first positionrelative to one another that allows for a collapsed implant height and a second position relative to one another that allows for an increased height. Arcuate portions 104, 108 of upper and lower members 102, 106 in the first position of the presentinvention are parallel to one another and form at least a portion of a cylinder along the length of implant 100. On an exterior 120 of each of opposed arcuate portions 104, 108 of upper and lower members 102, 106 is a portion 114, 116 of at least onebone-engaging projection 118 adapted for linear insertion, which in one preferred embodiment is a ratchet.

While a specialized form of a blocker 121 is described in significant detail below with reference to expander 122, blocker 121 need not be in contact with upper and lower members 102, 106 when implant 100 is initially inserted into theimplantation space. Blocker 121 may be a block or any type of spacer that is inserted between the articulated upper and lower members 102, 106 after implant 100 is positioned so as to hold portions of the upper and lower members 102, 106 spaced apartthe optimal height and angulation relative to one another. That is the implant may be expanded with an extrinsic tool and then the expanded portions held apart in the second position by a third body blocker placed therebetween. Further, a physician maybe able to select from a series of blockers having different heights usable with the same implant. The present invention includes expanding the implant with a tool, such as a spreader or a distractor but is not limited to a scissors type, a rack andgear type, a threaded member type or any other specific type of movement mechanism. Each tool nevertheless preferably engages upper and lower implant members 102, 106 to urge them apart. Blocker 121 is then inserted into contact with upper and lowermembers 102, 106 to maintain implant 100 at an expanded height. The height of the gap created by expanding implant 100 may be measured so that the appropriately sized blocker 121 or specialized blocker, expander 122, may be inserted in implant 100depending upon the amount of distraction of implant 100 desired by the surgeon.

Blocker 121 that is preferably in the form of expander 122 is located proximate at least one of the ends of the implant upper and lower members 102, 106 and holds at least a portion of upper and lower members 102, 106 apart so as to maintain theincreased height of implant 100 and resist the collapse of implant 100 to the collapsed implant height. Expander 122 in the present embodiment increases the implant height as measured in a plane passing through the mid-longitudinal axis of implant 100and upper and lower members 102, 106 during positioning of expander 122 and as may be desirable is capable of selectively increasing the height of the implant only.

Expander 122 in the present embodiment is adapted to rotate in a single direction approximately 90 degrees to move from an initial (first) insertion position I, as best shown in FIGS. 1, 3 and 10, to a final (second) deployed or expandedposition F, as best shown in FIGS. 13 and 13A, to increase the maximum height H of implant 100. Expander 122 preferably rotates in a plane perpendicular to the longitudinal axis L of implant 100 to increase the maximum height H of implant 100. Duringrotation, expander 122 remains in the same perpendicular plane relative to the longitudinal axis L of the implant. It is appreciated that an expander within the scope of the present invention may be designed to: rotate in either direction or bothdirections; rotate more than 40 degrees and less than 140 degrees; rotate more or less than 90 degrees; or rotate in a plane other than perpendicular.

Expander 122 has an opening 124 adapted to cooperatively engage a tool (not shown) used to rotate expander 122 to increase height H of implant 100. Opening 124 is adapted to cooperatively engage a tool that preferably rotates about an axisparallel to the longitudinal axis L of implant 100 to rotate expander 122 to increase height H of implant 100. Opening 124 also may be used as a passageway to pass fusion-promoting substances through expander 122 and into implant 100. It is appreciatedthat the expander may also include a projection, a detent, or any other configuration in place of or in addition to an opening so as to cooperatively engage a tool to move the expander.

In an alternative embodiment, an expander 122′ could have cutouts along any portion of its perimeter not involved in the actual rotation as shown in FIG. 1A. In another alternative embodiment, a blocker 121 having cutouts along a portion of itsperimeter can be positioned into the implant as shown in FIG. 1B. The cutouts can be used to engage a raised area within the implant to lock blocker 121 or expander 122′ into position or be used by the surgeon to grasp blocker 121 with a tool thatcooperatively engages the cutouts to facilitate inserting blocker 121 into the implant. Rather then having an opening, a projection, a detent, or a central aperture, a blocker 121′ alternatively could have two or more recesses or holes placed on orthrough the proximal face to engage a tool as shown in FIG. 1C.

As shown in FIGS. 1, 6, 7, 10, 12A-12C, and 13, in one preferred embodiment of the present invention for anterior insertion, expander 122 is located proximate the trailing end 126 of upper and lower members 102, 106. Three other preferredembodiments of the present invention for anterior insertion are shown in FIGS. 2A, 3A, 4A, and 5A, and in FIG. 3B, and in FIG. 13A, respectively. While in another embodiment shown in FIGS. 14-16 for posterior insertion, expander 222 is located proximatethe leading end 250. As shown if FIGS. 17-19, in three more alternative embodiments of the present invention for anterior insertion and possible use together, expanders 322 are located proximate each of leading and trailing ends 330, 326 of implants300.

Implant 100 preferably has an interior surface 128 and a hollow 130 defined therein. Expander 122 of the present embodiment is located proximate interior surface 128 and more particularly proximate interior surface 128 at trailing end 126 ofupper and lower members 102, 106. As is preferred, hollow 130 between the ends is unobstructed by expander 122 so as to allow for the unimpeded loading of the interior of the implant with the desired fusion-promoting substances; thus, loading theimplant is easy. Further, this preferred configuration of implant 100 makes available all of the volume of the hollow to contain fusion-promoting substances and so as to permit for the growth of bone directly through the hollow unobstructed by theexpander to adjacent vertebral bodies V. Unobstructed hollow 130 further allows for packing implant 100 with fusion-promoting substances. It is appreciated that depending on the intended results, the expander also may be located at distal end 126 orleading end 150 of upper and lower members 102, 106 or anywhere else within the implant. The unobstructed hollow preferably has no mechanism extending along the longitudinal axis of the implant when finally deployed and the mechanism that moves theimplant from a first position to a second position preferably does not move expander 122 longitudinally through the hollow portion. The expander may work by pivoting on a surface in contact with an interior wall portion of at least one of the upper andlower members 102, 106. Moreover, multiple expanders may be used in contact with upper and lower members 102, 106 at any location within the implant.

An alternative embodiment of an expander used with the present invention includes an expander having an external thread that cooperates with converging threaded portions of the upper and lower members 102, 106 to expand the implant as theexpander is rotated into position. Another alternative embodiment of an expander includes an expander having a cam configuration to expand the implant upon rotation.

The mechanism or tool used to move the expander is not part of the implant itself as the mechanism or tool is removed from the implant upon moving the expander, e.g. such as to rotate it into place and thus expand the implant to the finalexpanded position.

Expander 122 of the present embodiment moves arcuate portions 104, 108 of upper and lower members 102, 106 from a parallel orientation P, as shown in FIGS. 1 and 11 where implant 100 has a generally circular cross section in a first position attrailing end 126, to an angled orientation A, as shown in FIG. 12B where implant 100 has a generally oblong cross section at trailing end 126, in a second position. The implant need not be a true cylinder as a cross section need not form a completecircle, but may have portions of the perimeter absent, less round, flattened, flattened in more than one location, or other. It is appreciated that the expander also may move the arcuate portions of the upper and lower members from a first height ateach end to a second and greater height at each end.

In this embodiment, each of upper and lower members 102, 106 structurally cooperate with expander 122 so as to keep it located so as to function for its intended purpose. Each of upper and lower members 102, 106 of the implant of FIG. 1 has atrack 132, 134 within which expander 122 rotates. As best shown in FIGS. 1 and 13, track 132, 134 is configured to permit expander 122 to rotate therein and then to move from side to side within track 132, 134. Track 132 of upper member 102 and track134 of lower member 106 are in the same plane and the plane is perpendicular to the longitudinal axis of implant 100. It is appreciated that the track of the upper and lower members may be in different planes. Such a track design may be used with anexpander with a step in it or with offset tabs to engage tracks in different planes than one another. As with the expander, the tracks also may be at various angles to the longitudinal axis of the implant including parallel with the longitudinal axis ofthe implant. Other means for respectively engaging the implants and the expander position thereof are anticipated and within the scope of the present invention.

In rotating the expander, the longer dimension of the expander is substituted for the lesser dimension of the expander thus correspondingly increasing the maximum height of the implant from the first to the second position. As best shown inFIG. 9, the schematic representation of a geometric configuration of a cross-section of an expander 122 in accordance with one embodiment of the present invention, includes: a first dimension X corresponding to the height of expander 122 when implant 100is initially inserted into the spine and to the width of expander 122 when expander 122 is rotated to increase height H of implant 100; and a second dimension Y corresponding to the width of expander 122 when implant 100 is initially inserted into thespine and to the height of expander 122 when expander 122 is rotated to increase height H of implant 100. Second dimension Y is greater than first dimension X. Expander 122 has an upper surface 136, a lower surface 138, and side surfaces 140 as definedwhen expander 122 is positioned after rotation to increase height H of implant 100. As used herein, the term “side surfaces” refers to those portions of expander 122 that extend from upper member 102 to lower members 106 after expander 122 has beenrotated into its final deployed, or second position to increase the height H of implant 100. The “upper” and “lower” surfaces refer to those portions of expander 122 that are in contact with upper and lower members 102, 106 when implant 100 is in itssecond position and configuration and is fully expanded.

A preferred expander 122 is in the form of a modified rectangle or rhomboid. The expander generally has a longer dimension Y and a shorter dimension X. When the expander is inserted into a first position, the short dimension X spans thedistance between upper to the lower members 102, 106 and when expander 122 is in the second position, the longer dimension Y of expander 122 spans the distance between upper and lower members 102, 106.

Expander 122 in one embodiment of the present embodiment has a cross-section with side surfaces 140 intersecting upper and lower surfaces 136, 138 at two junctions which may be diametrically opposed corners 142 and two diametrically opposed arcs144. Arcs 144 are preferably each of the same radius and the modified hypotenuse MH between opposed arcs 144 generally approximates the distance between upper and lower surfaces 136, 138 such that, when expander 122 is rotated from an initial insertionposition toward a final deployed position, no substantial over-distraction occurs between adjacent vertebral bodies V.

The modified hypotenuse MH of this embodiment of the present invention may be equal, slightly less than, or slightly greater than dimension Y of expander 122. Having the modified hypotenuse MH be slightly greater than the dimension Y offers theadvantage of having expander 122 stabilized by an over-center position, such that more energy would be required to derotate the expander than for it to remain in the deployed or second position. By “without substantial over-distraction” what is meant isthat the modified hypotenuse MH length is closer to the expander dimension Y than to the unmodified hypotenuse UH; and is selected to allow the implant to preferably operate in the range of elastic deformation of the tissues about the operated discspace. Corners 142 may form, but not necessarily, a 90-degree angle and have an unmodified hypotenuse dimension UH.

By way of example, consider one embodiment of expandable implant 100 of the present invention having an optimum expanded height of 18 mm for a given implantation space. Any implant bigger than 18 mm should not be used in this implantation spacebecause during expansion of the implant, its height would move through the range of elastic deformation of the surrounding tissues and after that the implant would crush the vertebral bone or tear ligaments. Inserting an expander such that when theimplant is fully expanded allows the implant to be 18 mm would be ideal. It may be that an implant having a 17.5 mm expanded height for this implantation space is nearly as good, but a 16 mm expanded height may be too short to fit tightly within theimplantation space. Using a preferred rectangular expander without any modification to the hypotenuse that is adapted to expand the implant to the optimum 18 mm final height would require the expander to have a hypotenuse causing the implant to exceedthe 18 mm expanded height temporarily during rotation of the expander. So turning the expander without a modified hypotenuse would break the vertebrae or tear the ligaments. In reverse, if one could not expand the implant to more than 18 mm withoutcausing damage to the spine, then an implant selected to have an expander having a full unmodified hypotenuse so as to upon rotation temporarily cause the implant height to be 18 mm would in the finally expanded position allow the implant height tocollapse such that there would be insufficient height for the implant to adequately distract the implantation space. Generally, the modified hypotenuse of the expander is closer in length to dimension Y of the expander than to the unmodified hypotenuse.

As best shown in FIG. 1 in this particular embodiment, expander 122 has a depth dimension Z that is less than that of first and second dimensions Y, X. Expander 122 of the present embodiment has a fixed shape during movement from initialinsertion position I to final deployed position F within implant 100.

As shown in FIGS. 22A, 22B, and 23, blocker 121 may also take the form of a trailing wall that articulates or hinges to the inside of implant 100. The trailing wall may be left open during insertion of implant 100 so as to trail behind theupper and lower members. The trailing wall preferably does not protrude outside of a projection rearward of the circumference of implant 100. Such a configuration permits insertion of push-in implant 100 through a guard or tube adapted to permitpassage of the implant having a known circumference. Once implant 100 is implanted into position, the trailing wall is rotated about one of its ends and pushed into position and locked into place. This may occur by having the trailing wall contact aninclined plane that leads up to a notch into which the trailing wall locks into place. The trailing wall itself may also have at least one opening in it to permit the further loading of fusion-promoting materials into implant 100. Blocker 121 may alsobe adapted to cooperatively engage a tool used to move the blocker from an initial position to a final position to increase the height of implant 100, the tool being removable after moving blocker 121 into the final position.

Implant 100 may be configured to have a rotational articulation between the upper and lower members adjacent one of the ends of the upper and lower members. The rotational articulation may be formed by the upper and lower membersinterdigitating so as to cooperatively engage. The rotational articulation may be configured so that engagement occurs when the upper and lower members are substantially perpendicular to one another. The rotational articulation may also be configuredto remain engaged within a range of movement of the upper and lower members resulting from positioning implant 100 between a first position of the upper and lower members relative to one another allowing for a collapsed implant height and a secondposition relative to one another allowing for an increased implant height.

At least one or both of the upper and lower members of implant 100 may be configured to have a screw hole passing therethrough that is adapted to receive a screw passing from an interior of implant 100 into an adjacent vertebral body. The screwmay be adapted to pass from the interior of implant 100 through the screw hole and into the adjacent vertebral body to anchor implant 100 to the adjacent vertebral body.

Implant 100 may be configured to have a side surface contoured to cooperate with another implant when implant 100 is in a final position. Implant 100 and the cooperating implant may have a combined width therebetween less than the combinedheight of implant 100 and the cooperating implant.

While modified hypotenuse MH is illustrated as being between arcs 144 in this preferred embodiment, the configuration of expander 122 to form modified hypotenuse MH can take many forms, such that those junctions are relieved so as to have thedesired lesser dimension therebetween, including arcs, chamfers, a series of angled surfaces, or any other shape so long as the modified hypotenuse MH is sufficiently reduced in dimension to function for the intended purpose according to the presentteaching.

An embodiment of the present invention where modified hypotenuse MH is slightly greater than height Y offers the advantage of an over-center effect that locks expander 122 into place. In this instance, once expander 122 rotates past thediagonal of the modified hypotenuse MH, more force would be required to rotate it back from the final deployed position to its insertion position than in an embodiment where modified hypotenuse MH is equal to or less than height Y. Preferably, expander122 offers a surgeon multiple sensory advantages including: the tactile feel of expander 122 going over center and locking into place; the visual of the handle of a tool rotating expander 122 such that the tool handle goes from perpendicular to parallel,the reverse, or other, to the disc space into place; and auditory from the sound of expander 122 snapping into place.

Each of upper and lower surfaces 136, 138 of expander 122 of the present embodiment lie generally in a plane and are generally parallel to one another. For any implant it is anticipated that a physician may be able to select from a series ofblockers or expanders allowing for varying the increase in the implant height. Side surfaces 140 and upper and lower surfaces 136, 138 are oriented so as to substantially form a parallelogram. Any of a number of configurations for the expander forincreasing the height of the implant is possible, based on the teachings of the present application and such configurations as would be known to one of skill in the art are anticipated within the scope of the present invention.

The implant may preferably have an overlapping step-cut wall junction between upper and power members 102, 106 which offers the advantage of increasing the lateral rigidity of implant 100 holding the implant in the closed first position untilexpanded, and to the extent desired retaining the fusion-promoting materials within. The wall junction may be either solid or perforated. As best shown in FIG. 1, upper member 102 in one embodiment of the preferred invention has interior walls 146extending from each side of arcuate portion 104 toward lower member 106. Interior wall 146 is aligned parallel to longitudinal axis L of implant 100. Lower member 106 has an interior-contacting surface 148 adapted to contact or receive interior wall146.

In a preferred embodiment, upper and lower members 102, 106 are articulated to one another so one of the respective ends of upper and lower members 102, 106 remain articulated while the other of the respective ends of upper and lower members102, 106 are free to move away from one another. In a preferred embodiment the articulating means is achieved without a third member such as an axle shaft passing through the implant. The articulating means preferably is formed into the implant wallsthemselves in such a way that the two implant halves may be articulated when the halves are at 90 degrees to each other and then the halves are moved toward each other for insertion into the implantation space in the spine. The two halves are closedmuch like the cover of a book. The halves are locked together such that disarticulation will not occur when the implant is assembled for use. Any of a number of ways of articulating or joining upper and lower members 102, 106 is possible.

As best shown in FIG. 1 in this embodiment, upper and lower members 102, 106 of the present embodiment have a pivot point between adjacent distal ends 126 or leading ends 150 of upper and lower members 102, 106. The pivot point in the presentembodiment is at the end of implant 100 opposite expander 122. The pivot point of the present embodiment operates as a hinge or axle 152 but is formed out of the walls themselves so as to preferably not intrude into the implant interior or hollow or toblock access thereto. Hinge 152 includes a projection 154 extending radially from each side of arcuate portion 108 of lower member 106 and a slotted bracket 156 extending from each side of arcuate portion 104 of upper member 102 for engaging projection154. Brackets 156 and projections 154 are configured such that engagement occurs when upper and lower members 102, 106 are substantially perpendicular to one another. Brackets 156 and projections 154 are configured so as not to disengage within a rangeof movement of upper and lower members 102, 106 that would occur when the implant is in use either during insertion or resulting from the expansion in height of implant 100.

As best shown in FIG. 11, interior wall 146 of upper member 102 of the present embodiment is unexposed when implant 100 is in initial insertion position I. As shown in FIG. 12C, when implant 100 is in the expanded position F, implant 100 has ashape such that each of arcuate portions 104, 108 of upper and lower members 102, 106 are separated by at least a portion of interior wall 146, which in this position has an exposed side. The exposed side of the present embodiment is smooth and flat.

As best shown in FIG. 8, a cap 158 having an exterior surface 160 and an interior surface 162 is used to close leading end 150 of implant 100. Interior surface 162 of cap 158 has spaced slots 164 about its circumference to facilitate a snap fitbetween cap 158 and implant 100. Cap 158 and implant 100 can of course be adapted for either or both ends of implant 100.

As discussed above, implant 100 has a leading end 150 and a trailing end 126. One of the ends preferably has a tool-engaging portion. This tool-engaging portion is adapted to engage an insertion tool that holds implant 100 during insertioninto position into the spine. The tool-engaging configuration may be an opening, and more particularly an opening that is along the longitudinal axis of the implant. Of course, the tool-engaging portion need not be an opening. A hole or a blind hole,threaded or otherwise, is preferred in another embodiment. In another preferred embodiment the opening preferably is a threaded slot that functions to cooperatively engage and disengage a tool for use in inserting implant 100. The opening either aloneon the proximal end of implant 100 or in conjunction with other openings on the proximal end function to hold fusion-promoting material in implant 100 while permitting vascular access and bone growth through the opening or openings.

Implants of the present invention may have an end adapted to cooperatively engage an implant driver. The anterior approach implant may have a leading end, trailing end, or both ends that are adapted to engage a cap. One of the purposes forthat cap includes restricting the passage of fusion-promoting substances so that they remain loaded within the implant. Another purpose of the cap may be to add structural support to the implant. The cap may be solid or it may have openingstherethrough. Any such openings could allow for the loaded material to stay within the implant while providing for vascular access to allow for the ingrowth of blood vessels and the growth of bone through the end of the implant.

For a posterior approach implant, the cap may be on either or both ends. The trailing end of the implant in a posterior approach implant has direct exposure to the spinal canal where the spinal cord and nerve roots are located. A cap on aposterior approach implant may be for the purpose of sealing off the spinal canal from the fusion-promoting substances contained in the hollow interior of the implant so that no bone grows into the canal. Further, the present invention implant may beused in combination with chemical substances and/or compounds applied at the trailing end of the implant to inhibit scar formation, and the cap may be of benefit in shielding the fusion-promoting substances contained in the implant from these scarformation inhibiting chemicals and compounds. It may also be for the purposes identified herein used in association with the leading end cap of an anterior approach implant.

Shown in FIGS. 2A, 3A, 4A, and 5A, in accordance with the present invention, as embodied and broadly described herein, is one embodiment of an expandable push-in artificial interbody spinal fusion implant 100′ for anterior insertion across adisc space D between two adjacent vertebral bodies V of a human spine. Push-in implant 100′ includes an upper member 102′ having an arcuate portion 104′ adapted for placement toward and at least in part within the upper of the adjacent vertebral bodiesV and a lower member 106′ having an arcuate portion 108′ adapted for placement toward and at least in part within the lower of the adjacent vertebral bodies V. Arcuate portions 104′, 108′ of upper and lower members 102′, 106′ in a first position areparallel to one another and form at least a portion of a cylinder along the length of implant 100′. On an exterior 120′ of each of opposed arcuate portions 104′, 108′ of upper and lower members 102′, 106′ is a portion 114′, 116′ of at least onebone-engaging projection 118 adapted for linear insertion, which in one preferred embodiment is a ratchet.

Implant 100′ of FIGS. 2A, 3A, 4A, and 5A has a similar configuration to that of implant 100 of FIG. 1, except that it has portions of its perimeter flattened or truncated so as to have a truncated medial side 117′ and truncated lateral side119′. As best shown in FIGS. 3A and 5A, medial side 117′ is truncated to a greater extent than lateral side 119′. Alternatively, the medial side 117′ could be truncated to a lesser extent than lateral side 119′. FIG. 3B shows an embodiment of thepresent invention with implant 100” having medial side 117” truncated to approximately the same extent as lateral side 119′.

Implant 100′ has a major diameter or height equal to the distance between bone-engaging projects 118′ on opposed arcuate portions 104′, 108′. The width of implant 100′ is equal to the distance between a flattened segment and a pointdiametrically opposite the flattened segment, such as the distance between the medial side 117′ and lateral side 119′. The effect of having at least one of medial side 117′ and lateral side 119′ truncated or reduced is that the width of implant 100′ issubstantially reduced while the major diameter or height of implant 100′ is maintained.

FIGS. 13A and 17A show a pair of side-by-side implants 100′ having a truncated medial side 117′ and a pair of side-by-side implants 300′ having a truncated medial side 317′ and a truncated lateral side 319′, respectively. The implants areimplanted across the disc space with the medial sides facing and adjacent to another implant such that the combined overall width of the two spinal implants is less than twice the major diameter or height of the implants.

Shown in FIGS. 14-16, in accordance with the present invention, as embodied and broadly described herein, is an embodiment of an expandable push-in artificial interbody spinal fusion implant 200 for posterior insertion across a disc space Dbetween two adjacent vertebral bodies V of a human spine. Push-in implant 200 of the present invention includes an upper member 202 having an arcuate portion 204 adapted for placement toward and at least in part within the upper of the adjacentvertebral bodies V and a lower member 206 having an arcuate portion 208 adapted for placement toward and at least in part within the lower of the adjacent vertebral bodies V. Implant 200 in FIGS. 14 and 15 is shown being implanted into the spine from theposterior aspect with expander 222 on the distal end 226 or leading end 250 of implant 200. While anterior and posterior aspect approaches have been illustrated herein, the present invention is not limited to these illustrated approaches. Inparticular, but not limited thereto, the push-in implant of the present invention also may be used in push-in implants for insertion from the translateral aspect of the spine as disclosed by Michelson in U.S. Pat. No. 5,860,973, which is incorporatedherein by reference.

As best shown in FIG. 16, tracks 232, 234 of upper and lower members 202, 206 of the second embodiment have a cooperating surface 266 and expander 222 has a corresponding cooperating surface 268 that contacts cooperating surface 266 of tracks232, 234 to orient expander 222 in a predetermined location. The cooperating surfaces orient expander 222 within implant 200 such that the axis of rotation of expander 222 is parallel to the longitudinal axis of implant 200 and more particularly centerexpander 222 within implant 200 such that the axis of rotation of expander 222 coincides with longitudinal axis L of implant 200.

Tracks 232, 234 include sides 270 having cooperating surface 266 and expander 222 has corresponding cooperating surface 268 used to orient expander 122 in a predetermined location. Cooperating surface 266 of side 270 is a detent andcorresponding cooperating surface 268 of expander 222 is a projection. The projection preferably projects away from expander 222 in a direction parallel to the longitudinal axis of implant 200. The detent and the projection preferably center expander222 within implant 200 such that the axis of rotation of expander 222 coincides with the longitudinal axis of implant 200.

Shown in FIGS. 17-19, in accordance with the present invention, as embodied and broadly described herein, are three more embodiments of an expandable push-in artificial interbody spinal fusion implant 300 for insertion across a disc space Dbetween two adjacent vertebral bodies V of a human spine. Push-in implant 300 of the present invention includes an upper member 302 having an arcuate portion 304 for orientation toward the upper of adjacent vertebral bodies V and a lower member 306having an arcuate portion 308 for orientation toward the lower of the adjacent vertebral bodies V.

Implant 300 of the present embodiment may include any of the various features disclosed in association with implant 100 and implant 200 disclosed herein. Implant 300 further includes a side surface 372 contoured to cooperatively receive anotherimplant. See U.S. Pat. No. 5,593,409 by Michelson for a discussion of the advantages associated with placing implants in side-in-side contact.

Another aspect of implant 300 is that its upper and lower members 302, 306 have screw holes 374 passing therethrough adapted to receive a screw 378 passing from the interior of implant 300 into adjacent vertebral bodies V to anchor implant 300to an adjacent vertebral body V.

The articulation may be of one of two general types, examples of which are each herein disclosed. As shown in previously described embodiments of the present invention, the articulation may allow rotation about the articulation. A second typeof articulation allows for both rotation and expansion at the point of articulation. An example of this is shown in FIG. 19, where a peg and hook design is utilized. In this example both functions, that is, rotation or pivoting, and captured or limitedexpansion with a fixed end point or stop, occur at the same location. Alternatively, and without departing from the teachings of the present invention, those functions can be divided. By way of example only, and not limitation, expansion can be allowedand controlled by an interlocking wall design, as shown by the interlocking members in the alternative embodiments of FIGS. 20 and 21. Various other structural features as would be obvious to one of ordinary skill in the art after the teachings hereincan similarly be employed.

A fixed end point for the implant expansion is preferred for the proper functioning of the opposed bone screws. A purpose of the opposed bone screws is to rigidly secure the implant within the vertebral segment. A further purpose is to pulleach of the adjacent vertebral bodies toward the implant and towards each other so as to have a construct resistant to the deleterious effects of vertebral rocking as may otherwise occur with spinal flexion and extension absent such restraint. If thearticulation device captured the upper and lower members together, as in the embodiments of FIG. 1-16, by closely encircling a post then the implant could not expand at that location. So the coupling mechanism of FIG. 19 permits the upper and lowermembers to remain articulated, permits the implant to expand, and permits the screws to pull against the implant and each other, in opposite directions and to pull the bones toward each other. The optional extended slot and peg configuration on theright-hand side of FIG. 19 illustrated in dashed image lines is not needed to hold the implant together.

In accordance with this embodiment of the present invention, a second expander may be located at least in part between the upper and lower members for moving at least a portion of the upper and lower members away from one another to increase theheight of the implant defined by the maximum distance between the arcuate portions of the upper and lower members. All of the features described herein for the expander may also be applicable to the second expander. Additionally, the second expandermay be located proximate an end of the implant opposite the other expander, thereby providing an implant capable of being expanded at both ends of the implant. The increased height of the implant resulting from moving the two expanders may be theconstant or varied along the length of the implant according to the desired configuration of the implant.

The expandable push-in spinal fusion implant may be made of artificial or naturally occurring materials suitable for implantation in the human spine. The implant can comprise bone including, but not limited to, cortical bone. The implant canalso be formed of material other than bone, such as metal including, but not limited to, titanium and its alloys or ASTM material, surgical grade plastics, plastic composites, ceramics, or other materials suitable for use as a push-in spinal fusionimplant. The plastics may be bioresorbable. The push-in spinal fusion implant of the present invention can further be formed of bone growth promoting materials, including but not limited to, bone morphogenetic proteins, hydroxyapatite, and genes codingfor the production of bone. The push-in implant can be treated with a bone growth promoting substance, can be a source of osteogenesis, or can be at least in part bioabsorbable. The push-in implant of the present invention can be formed of a porousmaterial.

The expandable push-in spinal fusion implant of the present invention may be coated with, comprised of, be used in combination with, or have a hollow for containing bone growth promoting materials, including but not limited to, bonemorphogenetic proteins, hydroxyapatite, and genes coding for the production of bone. The push-in spinal fusion implant of the present invention can be formed of a material that intrinsically participates in the growth of bone from one of adjacentvertebral bodies V to the other of adjacent vertebral bodies V.

While various embodiments of the present invention are presented by way of example only and not limitation, common to each of them, is that the expandable push-in spinal fusion implant adapted for linear insertion across disc space D between twoadjacent vertebral bodies V of a human spine has an upper member having an arcuate portion adapted for placement toward and at least in part within the upper of the adjacent vertebral bodies V. The implant also has a lower member having an arcuateportion adapted for placement toward and at least in part within the lower of the adjacent vertebral bodies V. The arcuate portions of the upper and lower members have at least one opening. The openings of the upper and lower members are incommunication with one another to permit for the growth of bone from vertebral body V to adjacent vertebral body V through the implant. On the exterior of each of the opposed arcuate portions of the upper and lower members is at least a portion of abone-engaging projection adapted for linear insertion. A blocker in the form of an expander preferably is located proximate at least one of the ends to hold at least a portion of the upper and lower members apart from one another to increase the implantheight.

There is disclosed in the above description and the drawings implants, which fully and effectively accomplish the objectives of this invention. However, it will be apparent that variations and modifications of the disclosed embodiments may bemade without departing from the principles of the invention or the scope of the appended claims.